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A class of hierarchical neural network models introduced by Dotsenko for the 
storage and associative recall of strongly correlated memories is studied analyti- 
cally and numerically. In these models, patterns stored in higher levels of the 
hierarchy represent generalized categories and those stored in lower levels 
describe finer details. We first show that the models originally proposed by 
Dotsenko have a serious flaw: they are not able to detect or correct errors 
in categorization which may be present in the input. We then describe three 
different models which attempt to overcome this shortcoming of the original 
models. In the first model, the interaction between different levels of the 
hierarchy has the form of an external field conjugate to memories stored in the 
lower level. In the second model, a three-spin interaction term is included in 
addition to the usual binary interactions of the Hopfield type. The third model 
makes use of a time delay mechanism to induce, if necessary, transitions 
between memory states and their complements. Detailed analytical and numerical 
studies of the performance of these models are presented. Our analysis shows 
that all three models are able to detect and also to correct in varying degrees 
any error in categorization that may be present in the input pattern. 

KEY WORDS: Neural networks; associative memory; hierarchically 
correlated patterns; statistical mechanics of Ising systems; replica formalism; 
numerical simulation. 

1. I N T R O D U C T I O N  

Recen t ly ,  m u c h  i n t e r e s t  h a s  b e e n  f o c u s e d  o n  n e u r a l  n e t w o r k  m o d e l s  of  c o n -  

t e n t - a d d r e s s a b l e  m e m o r y .  (1) A n e u r a l  n e t w o r k  is a la rge ,  h i g h l y  c o n n e c t e d  

a s s e m b l y  of  s i m p l e  c o m p u t i n g  e l e m e n t s  ( n e u r o n s ) .  I n  t he  s i m p l e s t  m o d e l s ,  

e a c h  n e u r o n  is a s s u m e d  to  be  a t w o - s t a t e  t h r e s h o l d  dev ice  h a v i n g  o u t p u t s  
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+ 1 or - 1 ,  representing the active or the quiescent state, respectively. Such 
a neuron may be represented by an Ising spin. The state of the network at 
any instant of time is represented by the configuration of these Ising 
variables at that instant. The information (memories) stored in the network 
is embedded in the interconnections (synaptic efficacies) among the 
neurons. The time evolution of the network is governed by an assumed 
dynamics of the individual neurons. The system behaves like a content- 
addressable memory if the configurations representing the stored memories 
are locally stable attractors of the assumed dynamics. There are reasons to 
believe that such networks provide highly simplified models of some of the 
collective computational properties exhibited by the nervous system. 

The neural network models which have received the greatest attention 
from physicists belong to a class of which the original Hopfield model (2) is 
the simplest example. In these models, the synaptic interaction matrix is 
assumed to be symmetric with zero as diagonal elements. One may then 
define an "energy function" (Hamiltonian) for the network which has the 
property that the most commonly assumed dynamics of the neurons 
corresponds to the rule that the state of a neuron is changed (the corre- 
sponding Ising spin is flipped) only if the energy is decreased in the process. 
Such a network functions as a content-addressable memory if the interac- 
tion matrix is chosen so as to make the memorized configurations local 
minima of the associated energy function. The performance of networks of 
this kind depends on many factors, such as the prescription (learning rule) 
used to define the synaptic matrix, the assumed dynamics of the neurons, 
and the number and statistical properties of the stored memories. In the 
original Hopfield model, the memories were assumed to be random binary 
strings (strings of elements each of which takes on the values + 1 and - 1  
with equal probability) and the so-called "generalized Hebb rule" was used 
to construct the synaptic matrix. Extensive analytical and numerical 
studies (3'4) have shown that this model functions as an associative memory 
if the number of stored memories does not exceed about 15 % of the total 
number of neurons. This restriction on the storage capacity is a major 
shortcoming of the Hopfield model. Another problem with the Hopfield 
model arises from the fact  (I) that it performs very poorly if the patterns to 
be stored have strong correlations among themselves. 

During the last few years, several attempts have been made to over- 
come these shortcomings of the Hopfield model. In particular, several 
neural network models with a hierarchical organization of correlated 
memories have been proposed. (5) The hierarchical (treelike) structure may 
be embedded either in the construction of the synaptic matrix or in the 
architecture of the network itself. The idea of a hierarchical organization of 
memorized data in which the memories are first grouped into categories, 
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which are in turn grouped into supercategories and so on, is an intuitively 
appealing one. Also, there exists some neurobiological evidence (6~ 
suggesting that the processing of information in the nervous system is 
performed in a hierarchical fashion. The known ultrametric organization of 
the low-lying energy states of certain long-ranged spin-glass models (see, 
e.g., ref. 7) has been an added incentive for the construction of hierarchical 
neural network models. In this paper, we consider a class of models 
proposed by Dotsenko (8~ for the storage of an exponential number of 
highly correlated memories in a hierarchical structure. The basic idea in 
this approach is to divide the network into a number of "clusters" of 
neurons (Ising spins). These clusters form the lowest level of the hierarchy. 
A certain number of random binary patterns are stored in each of these 
clusters by using the Hebb rule. The signs of the sums of the spins (the 
magnetizations) in each of these clusters form the effective "spins" in the 
next level of the hierarchy. Again, these effective spins are grouped into 
clusters and several patterns are stored in each of these clusters. This 
construction may be continued to an arbitrary number of levels. For  
simplicity, we shall consider networks with only two levels. In that case, there 
is just one cluster in the second level. The patterns stored in this cluster 
represent different categories. The interaction matrix is constructed in such 
a way that the spins in the lower level clusters tend to converge to stored 
patterns which are consistent with one of the categories in the sense that 
the sign of the magnetization of the state reached by each lower-level 
spin-cluster matches that of the corresponding bit of one of the patterns 
stored in the upper level. An interesting visual representation of networks 
of this type may be given in terms of an analogy with image reconstruction. 
Let us consider an image composed of pixels each of which can be in one 
of the two states, black or white. These two states are identified with the 
+ 1 and - 1 states of an Ising spin representing a two-state neuron in the 
lower level of the network. The pixels are divided into groups which are 
identified with the spin clusters in the lower level of the network. The sign 
of the magnetization of a cluster then represents the overall blackness or 
whiteness of the corresponding group of pixels, and the patterns stored in 
the upper level represent "coarse-grained" views of the image. Convergence 
to appropriate patterns in the lower-level clusters corresponds to the 
retrieval of finer details consistent with one of the stored coarse-grained 
patterns. This process is similar to a recently proposed renormalization- 
group approach (9~ to image processing problems. It is also interesting to 
note that networks of this type have certain similarities with the hierarchi- 
cal organization of neurons in the visual cortex of the brain. (1~ 

In the papers of Dotsenko, (8~ two different prescriptions for the con- 
struction of networks with the properties described above were given. In 
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this paper, we point out the fact that networks constructed according to 
these prescriptions have a serious shortcoming if, as considered in ref. 8, the 
patterns stored in each of the lowest-level clusters are chosen to be random 
binary strings. We show that such networks have locally stable states in 
which the lower-level clusters converge to memory states whose magnetiza- 
tions do not have the correct signs as specified by the patterns stored at the 
upper level. If the interaction parameters are chosen to ensure convergence 
to stored patterns in the lower-level clusters, then all configurations in 
which one has convergence to memory states in the lower-level clusters are 
locally stable, irrespective of whether the signs of the magnetizations of 
these clusters match one of the stored patterns in the upper level or not. 
These networks thus do not have the capability of correcting errors in 
categorization. For an input configuration which is close to memory states 
in the lower level, but contains errors in the next level, these networks 
evolve to a stable state in which the errors in the upper level are not 
corrected. One of the attractive features of hierarchical memory models is 
the possibility of having a "hierarchy of errors." It is desirable for the 
network to have the property that in the process of associative recall, 
errors in determining the category should be less likely to occur than errors 
in the retrieval of finer details. The models proposed in ref. 8 do not achieve 
this goal. The arguments leading to this conclusion are described in 
Section 2. We also present numerical results supporting the analytic 
arguments. In subsequent sections, we describe three different ways of over- 
coming this shortcoming. In Section 3, we consider a network in which the 
interactions between the two layers correspond to the application of a field 
conjugate to patterns stored in the lower-level clusters. We show that this 
prescription leads to the desired behavior if the number of patterns stored 
in each of these clusters is small. We also present analytic and numerical 
results on the behavior of this model in the presence of fast synaptic noise 
("finite temperature"). In Section4, we consider a model in which a 
three-spin interaction is introduced in the lower-level clusters in order to 
break the symmetry between a stored pattern and its complement. This 
allows the network to choose the proper states in the lower-level clusters. 
An analytic calculation of the storage capacity of this network is described. 
We also present results of numerical simulations which demonstrate that 
this model functions as desired. Section 5 contains the description of a third 
model in which a set of connections with time delays are used to produce 
transitions between stored patterns and their complements, so that patterns 
consistent with one of the chosen categories may be selected at the lower 
level. The proper functioning of this model is also confirmed by simula- 
tions. Finally, in Section 6, we summarize the main results and discuss a 
few possible extensions of this work. 
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After the completion of this work, we came across a couple of papers 
which point out the shortcoming of the original Dotsenko model discussed 
here. In the paper by Dotsenko and Tirozzi, (n) the problem of convergence 
to patterns with wrong signs of the magnetizations of the lower-level 
cluster is avoided by storing patterns with large magnetizations in each of 
these clusters. The network studied by them is fundamentally different from 
the one considered here because in their model, the patterns stored in each 
lower-level cluster are strongly correlated (they in fact consider the limit of 
maximal correlations), whereas two patterns stored in a lower-level cluster 
of the model studied here are uncorrelated on the average. Thus, the 
analysis of Dotsenko and Tirozzi does not have much bearing on the 
problem we are considering. Willcox ~12) proposes to overcome the problem 
in the original model by introducing in the dynamics a "tunneling" process 
in which the signs of all the spins in a lower-level cluster are reversed 
simultaneously. In contrast, we have concentrated here on the construction 
of models in which the simple "single-spin-flip" dynamic s assumed in most 
neural-network models is retained and the interactions are chosen in order 
to achieve the desired behavior. 

2. T H E  D O T S E N K O  M O D E L  A N D  ITS L I M I T A T I O N S  

We consider a two-level hierarchy in which the lower level consists of 
n2 clusters, each containing n~ neurons (Ising spins). These neurons are 
represented by the Ising variables {aT}, i =  1, 2,..., nl and c~ = 1, 2 ..... n2. In 
each of these clusters, p~ random binary patterns (memories) are stored by 
using the Hebb rule. Thus, the intracluster interaction matrix has the form 

Pl  

- -  ~ i  ~.i , i r  (1) J~ ~=1 

where # labels the Pl different memory states in each cluster and ~ =  +1 
or - 1 with equal probability. We consider large values of Px and nl, with 
the ratio ~ = p~/n~ having a value much smaller than ec, the critical value 
calculated (4) for the Hopfield model. The construction of the second level 
of the hierarchy may be done in two different ways. In the first version of 
the model (Model I), only one set of neurons {aT} is present. The signs of 
the total spins (magnetizations) of the individual clusters form the effective 
spins {p~}, e = 1, 2 ..... n2, in the second level: 
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The next step is to store a certain number P2 (n2, P2 >> 1, p2/n2 ~ c~c) Of 
random binary patterns {~b;}, v-- 1, 2,..., P2 and e = 1, 2 ..... n2, which repre- 
sent the categories in the upper level. This should be done in a way that 
ensures that only states with p~=P06;, e =  1, 2 ..... n2, P =  __1, are stable 
states of the dynamics of the network. In the original model, this goal is 
supposed to be achieved by using a Hebb-like rule to define an intercluster 
interaction matrix 

P2 

a ~ q~b}, c~#fl (3) 
J'~# = n2 v = 1 

where a is an adjustable parameter. The total Hamiltonian for the network 
then has the form 

n =  - 2 2 g~aTa~- 2 J'~# EaT 2 a#~ (4) 
o~=1 i > j  a>f l  i / \ N / n l  j J J  

In the second version of the model (Model I I )  the upper level of the 
network consists of a different set of neurons p~, e =  1, 2,..., n 2. These 
neurons interact among themselves via the Hebb rule matrix J'=# defined in 
Eq. (3). The connection between the two levels, which should ensure that 
each lower-level cluster converges only to memory states with the correct 
sign of the total magnetization, is supposed to be provided by a 
ferromagnetic interaction of each spin p= in the upper level with all the 
spins {a~}, i -  1 ..... nl,  of one of the lower-level clusters. The Hamiltonian 
is then given by 

n2 

H = -  E E J~7~rj- Z J '#P,P#--hhZP=Z~ 
~--1 i > j  ez>fl ~ i 

(5) 

where hh is a positive constant of order unity. For both models, we assume 
the usual deterministic (zero-temperature) asynchronous dynamics defined 
by the rule 

a~(t + 1) = sign[hT(t)] (6) 

where the local fields {h~} are given by 

j ~ i  fl~-~ RI j 

h~ = 2 J~a7 + hp~ 
j # i  

(Model I) 

(Model II) 

(7) 
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The effects of fast synaptic noise may be taken into account by modifying 
the dynamics in the following way: 

a~(t+ l)= -aT(t)withprobability l if h~(t) a~(t)<O 
a~(t + 1) = -o-7(t) with probability exp[ -2hT(t) a~.(t)/T] (8) 

if hT(t) aT(t) >10 

Here, the "temperature" T is a measure of the strength of the noise. 
The dynamics of the p spins in Model.II may be defined in an analogous 
manner. 

In order to simplify the analysis of the behavior of these models, we 
assume, without any loss of generality, that S i  ~ > 0 for all /~, ~. Then, 
for Model 1, the desired stable states are the ones in which one has 
convergence to stored patterns in the upper level as well as in each of the 
lower-level clusters: 

aicr = -~i?#ecxPe for all i, ~ [P~ = _+ 1 ] 
(9) 

p= = sign a~ P~ - ~b~ for all 

It is easy to show that if the parameter a [see Eq. (3)] is sufficiently small, 
then the states which satisfy the conditions given in Eq. (9) are stable under 
the dynamics specified in Eq. (6). For such a state, the local field h~ at the 
ith spin in the eth cluster is given by 

_ o l v ~ = + O ( ~  ~ ab (~___~P2 a ) (10) 

Here, b is a numerical factor of order unity, defined by 

where ( - . . )  represents an average over the random distribution of the ~ .  
If the ratios p~/n~ and p2/n2 are small compared to e~, then the correction 
terms in Eq. (10) arising from the interference of other memorized patterns 
may be neglected. Then, it is clear that the state { a ~ = ~ ; }  is locally 

stable (h 7 has the same sign as that of ~ b ~ , )  if ab/~l  < 1. If ab/,,/~ > 1, 
then the local field would have the same sign as that of ~b~ and this would 
result in a ferromagnetic alignment of the spins in each cluster. Thus, the 

value of a must satisfy the inequality ab/~l  < 1 in order to ensure that the 
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configurations which correspond to convergence to memories in the lower 
level are at least locally stable. We now show that if this inequality is 
satisfied, then the configuration 

~ri~ = - , -  ~ ~i'~v ~ ,  i = 1, 2,..., n I 
(12) 

i 

is also locally stable. For this configuration, the local field at the ith spin 
in the e th is given by 

ab 

which has the same sign as -~b~,r "~ if ab/x/-~ < 1. Note that the configura- 
tion specified in Eq. (12) has convergence to memory states in each of the 
lower-level clusters, but an error in the ~th bit at the upper level. Since this 
state is also locally stable, the network is not able to correct this error. 
Similarly, it can be shown that if ab/x/-~ < 1, then all states with con- 
vergence to stored patterns in the lower-level clusters are locally stable, 
irrespective of whether the signs of the magnetizations of these clusters 
match one of the patterns {~b~,} or not. This means that the system will 
converge to a pattern belonging to a correct category only if the input 
pattern has the correct signs for the magnetizations of all the lower-level 
clusters. This is, of course, not the behavior one desires for the model to 
exhibit. In order to have some capacity for error correction in the deter- 
mination of the category, it is necessary to have a model with the property 
that states in which the signs of the magnetizations of the lower-level 
clusters are different from those specified by the patterns {~b;} are not 
locally stable. In other words, the model should be able to discriminate 
between a stored pattern {~'~} and its complement { - ~ }  depending on 
whether the sign of Z i  r matches that of ~b~, or not. As discussed above, 
Model I does not achieve this goal. 

It is easy to show that Model II also suffers from the same deficiency. 
By choosing the parameter a to be sufficiently large, one can always make 
the states {p~--~b~} stable in the upper layer. From Eqs. (6) and (7), it is 
readily seen that the state {a~ '='~vx~'~i s which represents a convergence 
to appropriate memory states in all the lower-level clusters is locally 
stable if h < 1. However, for h < 1, all states represented by ~r i~-- P ~ 2 ~ ,  
i =  1, 2 ..... n~, e = 1, 2,..., n2, and P~ = +1 chosen arbitrarily, are also locally 
stable. Thus, this model also cannot correct errors in categorization. All 
states with convergence to memories in the lower-level clusters are locally 
stable irrespective of whether the signs of the magnetizations of the clusters 
correspond to one of the allowed categories or not. 
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We note here that Model II is somewhat easier to analyze than 
Model I, especially if we make the following assumptions about the time 
evolution of this model. We assume that inputs are given separately to the 
two levels, with p~ set equal to sign (Zi ~ )  at the beginning. The spins in 
the upper level are first allowed to relax until they reach a stable state. If 
the parameter a and the ratio p2/n2 are chosen properly, then the memory 
states {~b;} will be locally stable, and we assume that such a state is 
reached in the upper level. The spins in the lower level are then allowed to 
relax. The dynamics of the spins in the eth cluster is then governed by the 
effective Hamiltonian 

H a = - ~ J ~ . ~  - h~b; ~ ~7 (14) 
i > j  i 

Since there is no intercluster interaction, each cluster may be considered 
separately and then we may drop the cluster index e. The problem then 
reduces to that of describing a single hi-spin cluster interacting with a 
single spin p in the upper layer. In the remaining part of this paper, we 
shall use this simplified version of the problem. Cast in this form, an 
analysis of Model II reduces to that of the behavior of a model defined by 
the Hamiltonian 

i > j  i 

where ~b = +1 or -1 .  This Hamiltonian describes a Hopfield model in a 
uniform magnetic field. The properties of this model can be calculated by 
a straightforward application of the replica formalism developed by 
Amit eta/. (4) We consider the limit nl, Pl-~ o0 with ~= pl/nl finite and 
define the usual order parameters 

r n _ - ( 1 ~  ~o~y~> (16a) 

q = ( l ~  (#~)a> (16b) 

z (' 

where the bar represents a thermal average at temperature T [-we consider 
the general stochastic dynamics of Eq. (8)]. Assuming replica symmetry, 
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we obtain the following self-consistent equations for the order parameters 
in the T-~ 0 limit: 

1 m + h  m - h  
rn = ~  [ E r f ( ~ )  + Erf ( ~ ) 1  (17a) 

1 1 [e-(m+h)z/2~r+e (m h)2/2~r] (17b) 
C = ~ (1 - q) - (2~zc~r) m 

1 
r = - -  (17c) 

(1 - C)  2 

The same equations are obtained for both ~b = 1 and ~b = -1 .  The first thing 
we note is that these equations are invariant under a change of sign of h. 
Thus, the sign of upper-level spin does not have any effect on the ther- 
modynamic behavior of the spins in the lower-level cluster. Also, for a 
given h, if mo is a self-consistent solution of Eqs. (17a) (17c), then - m o  
is an equally good solution. Thus, the uniform field term does not 
discriminate between the memory state {a,-= ~0} and its complement. This 
result is in agreement with the conclusion reached earlier in this section. 
We also note that in the c~ ~ 0 limit, Eq. (17a) becomes 

m = �89 + h) + Sign(m - h)] (18) 

which has a nonzero solution, m = _1 if [h[ < 1. Thus, as noted earlier, 
convergence to a memory state in the ~ ~ 0 limit is possible only if [hb < 1. 
The main effect of the presence of the uniform field term is to reduce the 
critical storage capacity ~c beyond which no solution with m r  exists. 
Numerical solutions of Eq. (17) show that ec decreases smoothly from 0.14 
a t h = 0 t o z e r o a t h = l .  

The conclusions reached in the arguments presented above have been 
verified by numerical simulations. For Model I, we carried out a simulation 
in which we had nine clusters at the lower level, each containing 51 spins 
(n, -- 51, n 2 -- 9). Four randomly chosen patterns were stored in each of the 
lower-level clusters and the upper cluster had two patterns stored in it 
(Pl = 4, P2 = 2). The value of the parameter a was set at 1.0. Initial con- 
figurations were chosen to lie close to stored patterns or their complements 
in the lower-level clusters, without any bias for the signs of the cluster 
magnetizations. The spins were updated in a random sequence according to 
the zero-temperature dynamics of Eq. (6) until convergence to a stable 
state was reached. In Table I, we present the results for the distribution 
(obtained from 500 runs) of the overlap of the final p-spin configuration 
with the closest stored pattern in the upper level. For  a comparison, we 
also show in Table I the exact distribution that would have been obtained 
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Table I. Distribution of the Largest Overlap with Stored 
Patterns in the Upper Level of a Dotsenko Model (Model I) a 

765 

Overlap 

Probability for 

Dotsenko model  Random configurations 

1/9 0.297 0.2422 
3/9 0.553 0.4307 
5/9 0.149 0.2505 
7/9 0 0.0688 
1 0 0.0078 

With n 1 = 51, r t 2 = 9  , Pl =4, Pl =2, a= 1.0. The distribution of the 
largest overlap for randomly chosen configurations is also shown for 
comparison. 

if the overlaps were calculated for randomly chosen p-spin configurations. 
These two distributions are quite similar, indicating that the presence of the 
intercluster interaction has almost no effect toward ensuring convergence 
to stored patterns at the upper level. In contrast, a Hopfield model with 
nine spins and two memories shows convergence to a memory state in 
nearly 100 % of runs starting from random inputs. In order to test the per- 
formance of Model II, we simulated the behavior of the system defined by 
the Hamiltonian of Eq. (15), with nl = 100, p 1 = 4 ,  ~b= 1, h=0 .2 ,  and 
Z i  ~ > 0 for all/~. Starting from a randomly chosen initial configuration, 
the spins were updated until convergence to a stable state was reached. 
Overlaps of this state with the stored memories were calculated and the 
memory state for which the magnitude of the overlap is largest was iden- 
tified. Figure 1 shows the distribution (obtained from 1000 runs) of the 
overlap with this memory state. This distribution is found to be more or 
less symmetric about  zero, indicating that the uniform external field h does 
not accomplish the task of inducing convergence to only those memory 
states which have the correct sign of the magnetization. Similar results were 
obtained for h = 0.4. Higher values of h were found to induce ferromagnetic 
ordering in the lower-level cluster. 

3. M O D E L  W I T H  A F I E L D  C O N J U G A T E  T O  M E M O R Y  S T A T E S  

As discussed in Section 2, the behavior of Dotsenko-type models of the 
second kind may be understood by considering a single cluster at the lower 
level interacting with one spin in the upper level. We showed earlier that 
a ferromagnetic interaction between the upper-level spin and the 
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Distribution of the largest (in magnitude) overlap with stored patterns for a 
lower-level cluster interacting ferromagnetically with a spin in the upper level [-model defined 
in Eq. (15)]. The values of the parameters are n l=100 ,  p1=4 ,  ~b=l, and h=0.2.  The 
histogram was obtained from 1000 runs with random inputs. 

lower-level cluster does not discriminate effectively between a memory state 
and its complement if the memories are chosen to be random binary 
sequences. The main reason for this failure is the fact that each randomly 
selected memory state has a magnetization of order x / ~ ,  so that the 
energy associated with a uniform field term is also of order ~ if we con- 
sider cluster states close to memories or their complements. The energy 
associated with the Hopfield term is, on the other hand, of order nl, so 
that this term dominates over the effects of the uniform field. This observa- 
tion suggests that if the interaction between the two levels is chosen to have 
the form of an external field conjugate to the patterns stored in the 
lower-level cluster, then it may discriminate effectively between a memory 
and its complement in the lower cluster. We therefore consider a model 
defined by the following Hamiltonian: 

Pl 

H = -  ~ J~cr~aj-hfb~ ~ ~a~ (19) 
i > j  i , u= l  
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where the matrix Jo has the Hebb-rule form of Eq. (1) and ~b= +1 
represents the state of the spin at the upper level. For  the sake of definite- 
ness, we assume that ~ ~ > 0 for all #. Then, the memory states {ai = ~ }  
should be selected at the lower level if ~b--1, and the complement states 
should be selected if ~b = -1 .  As shown below, the added field conjugate to 
the memory states achieves this goal if the number of patterns (p~) stored 
in each cluster is small and the value of h is chosen properly. If p~ is large, 
then the fields conjugate to all the other memories interfere with the 
retrieval of a particular memory and the network does not function as 
desired. 

We first consider the situation where pl is of order unity and assume 
that ~b -- 1. In a desired retrieval state {a~ = ~ } ,  the local field at site i is 
given by 

hi= (1 + h)r + h Y,v ~ ~ + ~ (~n~) (20) 

Since the largest magnitude the second term can have is h ( p l - 1 ) ,  this 
state will be stable if 1 + h > h ( p l -  1), i.e., if h <  1/(p1-2) .  

Similarly, it is easy to show that the complement state {ai = - ~ f }  will 
be unstable if h > lips. Thus, the field term would be able to make the 
desired choice if the value of h lies in the interval between lip 1 and 
1/(pl - 2 ) .  Since the width of this interval goes to zero for large values of 
p~, the model being considered here would not be useful in the large-p~ 
limit. The restriction to small p~ values is, however, not a very serious one 
because a large number of correlated patterns m a y  be stored in the 
network even if Pl is small. For  example, in a 1010-spin network with 
nl = 100, n 2 = 10, and Pl = 4, the number of patterns one would be able to 
store and retrieve is 41~ which is quite large. 

Although the recall states {~i = ~ }  are locally stable if h < 1/(pl - 2), 
they are not the globally stable states of the system. The thermodynamic 
behavior of this model for Pl ~ O(1) and n~ --* oo may be worked out easily 
by using the analytic methods developed by Amit etaL (3) Defining the 
overlaps m" as 

we obtain the following self-consistent equations for them: 

my ,22, 
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where fl = 1 / T  and ~b has been set equal to unity. The free energy per spin 
has the form 

/ 11 1 2 1 l n2cosh  fi (m ~ + h ) r  (23) f ( fl, h ) = ~ ~ m , - -fl 
,u 

Using these equations, the thermodynamic behavior of the system may be 
analyzed for any value of p l ~ O ( 1 ) .  Here, we explicitly work out the 
details for Pl = 4. We confine our attention to solutions of Eq. (22) for 
which three of the four m v have the same value (m') and the fourth one 
may have a different value (m). Other types of solutions are possible, but 
those solutions have high values of the free energy and will not be 
considered here. The self-consistent equations for m and m' have the form 

m = ~[tanh f l (m + 3m'  + 4h) + 3 tanh f i (m + m'  + 2h) 

+ 3 tanh f l (m - m ' )  + tanh f l (m - 3m'  - 2h)] 
(24) 

m' = ~[tanh f l (m + 3m'  + 4h) + tanh f l (m + m'  + 2h)] 

+ tanh f l (m'  - m )  + tanh f l (3m'  - m + 2h)] 

The free energy of a solution of these equations may be calculated from 
Eq. (23), and the local stability of such a solution may be determined by 
calculating the eigenvalues of the matrix that describes small fluctuations 
about the solution. In the T ~ 0  limit, the tanh functions appearing in 
Eq. (24) reduce to sign functions. Solutions of these equations may then be 
obtained by inspection. We find the following solutions at T = 0  for 
positive values of h: 

(a) m = 1, m ' = 0 :  This solution is possible if h <0.5, as expected 
from the arguments described earlier in this section. At T =  0, it represents 
a state with perfect recall of a stored memory. It is locally stable near T = 0, 
but becomes unstable at higher temperatures (at T~-0.3 for h =0.3). 

(b) m = m ' =  0.375: This solution, which is present for all values of h, 
is a continuation of the symmetric disordered phase that occurs at high 
temperatures. It is unstable for T <  0.5. This state has the lowest free energy 
at high temperatures. 

(c) m=0.75,  m' =0.25: This solution is also present for all positive 
values of h. It is stable at low temperatures, and it becomes unstable at a 
temperature slightly higher than 0.5. It has the lowest free energy at low 
temperatures and therefore it is the globally stable low-temperature phase 
of the system. 

(d) m = 0 ,  m' =0.5: This solution, which is also present for all values 
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of h, is locally stable at low temperatures. Its free energy is slightly higher 
than that of solution (c). 

(e) m = - 1 ,  m ' = 0 :  This solution represents a convergence to the 
complement of a memory state. It is present only if h < 0.25, as expected. 
It has a high value of the free energy and it becomes unstable at a low 
temperature ( T -  ~ 0.1 for h =0.2). 

The system undergoes a weakly first-order phase transition from the 
high-temperature disordered phase [solution (b)] to a low-temperature 
ordered phase represented by solution (c) at a temperature slightly above 
0.5. This transition is similar to that exhibited by the four-state Potts model 
in mean field theory. The external field h breaks the symmetry between a 
pattern and its complement, but preserves the symmetry under permuta- 
tions of the labels representing the different memory states. This permuta- 
tion symmetry is broken at the phase transition to the ordered state. 

The calculations described above have to be modified if the number of 
memories Pl is proportional to nl. In this limit, the magnitude of the field 

should be chosen to be proportional to 1/x/-~, so that the local field 
produced by this term is of order unity at each site. A replica-symmetric 
calculation of the thermodynamic behavior of this system yields the 
following self-consistent equations at T ~ 0 for the order parameters m, q, 
and r defined earlier: 

m = Erf(m/(2~r) 1/2) (25a) 

q - 1 (25b) 

1 + h  '2 
C = (  2--~-~1/2e m2/2~ (25C) 

r -  (1-- C) ~ ' \ z~r / 

where h = h ' /x /~ .  As expected from the general arguments described in the 
first part of this section, the presence of the h term does not discriminate 
between a pattern and its complement in this limit. The main effect of the 
h field is to increase the "noise" arising from the interference of nonconden- 
sed patterns. This interference causes a decrease of the storage capacity of 
the network as h' is increased from zero. From a numerical solution of 
Eq. (25), we find that the critical value of ~=Pl/nl  goes to zero at 
h' -~ 0.35. 

We have carried out a few numerical simulations to check some of the 
predictions of the analytic calculations. The histograms shown in Fig. 2 
were obtained from a simulation with nl = 101, Pl = 4, ~b = 1, h = 0.3, and 
Z i  i f  > 0 for all /~. The chosen value of h lies in the region where the 
memory states {a i=  r are locally stable, whereas their complements are 
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Fig. 2. Distribution of the largest (in magnitude) overlap with stored memories for the 
model with an external field conjugate to all the memorized patterns [see Eq. (19)]. The 
values of the parameters used are nl = 101, pl  = 4, h = 0.3, (b = 1. The first histogram (solid 
line) shows the distribution obtained from 400 runs, each starting from a 10% corrupted 
version of one of the memories. The second histogram (dashed line) shows the distribution 
obtained when the initial configurations are chosen to be 10% corrupted versions of the 
complements of the memories. 

not. The histograms show the distributions of the overlap of the final stable 
configuration with the memory state for which the overlap has the largest 
magnitude. Large positive overlaps represent convergence to memory 
states, whereas large negative values correspond to unwanted convergence 
to the complement states. The first histogram (solid line) shows the results 
for 400 starting configurations obtained by reversing the signs of a ran- 
domly chosen small fraction (10%) of the spins representing one of the 
stored memories. We find that the system converges to the appropriate 
memory state in nearly all the runs. The second histogram (dashed line) 
shows the results obtained from 400 runs in which the initial states were 
10% corrupted versions of the complements of the memory states. This 
histogram has very little weight at large negative overlaps, indicating that 
the field term effectively prevents the system from converging to the com- 
plement of a memory state. In a large fraction (~  45 %) of runs, the final 
state has nearly 100% overlap with one of the stored memories. This 
model, thus, is able to correct errors in categorization in nearly half of the 
runs. However, in a substantial number of runs, the system ends up in 
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spurious states which do not have large overlaps with any of the stored 
memories. The possibility of getting stuck in spurious states is, of course, 
present in all Hopfield-like models. This problem is made worse by the fact 
that there is no way for the system to "realize" that the stable state it has 
reached is a spurious one. The same difficulty is present in the model we 
are considering here. We note, however, that in this model there may be a 
way for the system to find out whether the input pattern belongs to one of 
the stored categories or not. We find that the average number of updates 
needed to reach a stable state from an initial configuration close to the 
complement of a memory state is substantially larger (by a factor of ~ 2 )  
than that needed when the initial state is close to a memory. Thus, by 
monitoring the "time" required to reach convergence, the system may be 
able to determine whether the input pattern belongs to one of the allowed 
categories or not. 

4. M O D E L  W I T H  T H R E E - S P I N  I N T E R A C T I O N S  

In this section, we consider a model with three-spin interactions in the 
lower-level clusters. In the original Hopfield model, the Hamiltonian is 
quadratic in the spin variables and is therefore invariant under a 
simultaneous reversal of the signs of all the spins. For  this reason, the 
Hopfield model does not discriminate between a stored pattern and its 
complement. A Hamiltonian with a three-spin interaction term would not 
be invariant under a simultaneous spin reversal. A model with such a 
Hamiltonian, therefore, would not have this degeneracy between a memory 
and its complement. Since we are interested here in networks which are 
able to discriminate between a memory and its complement, we consider a 
model with the Hamiltonian 

H =  - ~ Jij~riaj-~ 2 Kijkaiajak (26) 
i > j  i v a j # k  

where ~b = + 1 represents, as before, the state of the spin in the upper level 
and the coefficients Kak of the three-spin term have the Hebb-rule-like form 

1 pl 
Kijk=-~ ~, ",i~url'r't"~j "~k (27) 

l / t = 1  

The adjustable parameter 2 determines the strength (relative to the usual 
Hopfield term J,j) of the three-spin interaction. As before, we consider 
memory states with Z e r  Then, for ~b= ___1, the states {a i=  + ~ }  
should be stable and their complements should be unstable. Since for ~b = 1, 

822/64/3-4-19 
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the energy associated with the three-spin interaction term is negative for 
the states {ai= r and positive for the spin-reversed states, the model 
defined in Eq. (26) is expected to provide the required discrimination 
between a memory and its complement if the coefficient 2 is sufficiently 
large. The analysis presented later in this section shows that this is indeed 
the case. 

A three-spin interaction term K~kaiaja k may be looked upon as 
describing a situation in which the sign of the interaction between a pair 
of spins (say i and j)  depends on the state of a third spin (k). A similar 
situation is known to exist in biological networks, (13~ where one finds that 
the effect of one neuron on another is sometimes determined by the state 
of a third neuron (a so-called interneuron). Also, connections similar in 
nature to three-spin interactions are often used in models of parallel 
distributed processing, (14) where they are called "Sigma-Pi" units. 

Hopfield-like models with general p-spin interactions were studied by 
Gardner, (15) who showed that the storage capacity of a network with only 
p-spin interactions is proportional to the (p - 1)th power of the number of 
spins. In the model considered here, both two-spin and three-spin interac- 
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tions are present. It is easy to show that the storage capacity of this model 
is proportional to n~, the number of spins. The usual "signal-to-noise" 
analysis (~3 tells us that the noise coming from the two-spin term due to the 
interference of noncondensed patterns is of order (pt/n~) 1/2, whereas the 
three-spin term generates a noise of order (pl/n~) ~/2. Since the signals 
generated by both two-spin and three-spin terms are of order unity, the 
noise coming from the two-spin term would overwhelm the signal if p~ 
increases faster than linearly with na. If Pl is of order nl, then the 
three-spin term increases the signal without increasing the noise. The net 
effect is an increase of the storage capacity, so that the critical value of 

=p~/nl  is expected to be higher than that calculated for the Hopfield 
model with only two-spin interactions. 

The thermodynamic behavior of the model defined in Eq. (26) may be 
analyzed by using a straightforward generalization of the replica method 
developed by Gardner. A replica-symmetric calculation (with ~b = 1) along 
these lines leads to the following self-consistent equations in the T ~  0 
limit: 

m = Erf(k/(2er) 1/2) (28a) 

q __ 1 (28b) 

r = 1/(1 - C) 2 (28c) 

2 )1 /2  _ k 2 

k = m + 2m 2 (28e) 

For  2 ~ 0, the self-consistent equation for m is no longer symmetric 
under m ~ - m .  Also, solutions with m close to - 1 are clearly not possible 
if 2 > l. Thus, if 2 is chosen to be greater than unity, then this model effec- 
tively prevents convergence to the complements of the memory states. The 
critical storage capacity of the network may be determined from numerical 
solutions of Eqs. (28a)-(28e). We find that ~c increases rapidly with 2, 
typical values being ~c -- 6.0 for 2 = 0.5 and ~c -~ 13 for 2 = 1. 

We have also carried out numerical simulations to test the perfor- 
mance of this model. These simulations are very similar to those described 
in Section 3, except that we took n 1 = 51 and pl = 4. The value of 2 was set 
at 1.2. The histogram for the distribution of overlaps for runs in which the 
initial state was one of the memories corrupted by 10% is not shown 
because we obtained convergences to the target patterns in all the runs. 
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The histogram for the distribution of overlaps obtained from runs starting 
from 10 % corrupted versions of complements of memory states shows that 
the system converges to a memory with the correct sign of the magnetiza- 
tion in about 70 % of the cases. The problem of convergence to spurious 
states is, however, present in this model also. The "time" taken to reach 
convergence is again substantially longer when the initial state is close to 
the complement of a memory state. The general behavior of this model is 
thus similar to the one described in Section 3, except that it has the added 
advantage of being able to store a macroscopic number of memories in 
each of the lower-level clusters. This advantage, however, is obtained at the 
cost of introducing three-spin interactions. 

5. M O D E L  W I T H  S Y N A P S E S  W I T H  A T I M E  DELAY 

The models we have studied so far all involve instantaneous synaptic 
interactions, so that we could write down appropriate Hamiltonians 
describing their properties. In this section, we consider a model that uses 
synaptic connections with a time delay to induce a transition in a 
lower-level cluster from a memory to its complement if the sign of the 
magnetization of the memory state does not match that of the correspond- 
ing spin in the upper level. This model makes use of the method of tem- 
poral sequence generation proposed by Kleinfeld ~6) and by Sompolinsky 
and Kanter. (17) These authors consider models in which there are two dif- 
ferent sets of synaptic interactions. The first set is of the Hopfield type, 
tending to stabilize the network in a memory state. The second set of con- 
nections tends to induce specified transitions from one memory state to 
another. A time delay is associated with this set of interactions, so that the 
system remains in a memory state for some time before making a transition 
to another one. We make use of the same principles to construct a model 
in which the system undergoes a transition from a memory state to its com- 
plement if the magnetization of the memory state does not have the 
"correct" sign. The local field acting on the ith spin at "time" t in this 
model is given by 

hi(t ) = ~ Jo.aj(t)+ 2q(t) ~ Dij~j(t-  r) (29) 
j ~ i  jvai  

where the first term is the usual Hopfield one, 2 is an adjustable parameter, 
and q(t) is a variable that takes on the values 0, 1 according to whether the 
sign of the magnetization of the cluster at time t matches that of the corre- 
sponding spin ~b in the upper level or not. A simple network to compute 
r/(t) will be described later. The matrix D/j is constructed in a w a y  that 
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makes the second term in Eq. (29) tend to induce transitions from memory 
states to their complements: 

1 pl 
D ~ = - -  Z (f~Y (30) 

n l p = l  

where we have used the notation (~ = - ~ .  The connections represented by 
D~ are delayed in the sense that the local fields arising from them at time 
t depend on the spin configuration at an earlier time t -  z. The time delay 

is an adjustable parameter, usually taken to be ~ l0 attempted updates 
per spin. 

In order to understand the working of this network, let us consider a 
situation where at time t = to, the lower-level cluster has settled down into 
a memory state {a i=  ~ }  under the action of the Jo term. The configura- 
tions at earlier times are assumed to be uncorrelated with the memories, so 
that the contribution to the local field coming from the D~ term is 
,-~ O(1 /x /~) ,  which may be neglected. If the magnetization of this state has 
the correct sign, then the second term in Eq. (29) is inoperative (~/= 0) and 
the system remains in this state. If, on the other hand, the sign of the 
magnetization of the memory state does not match that of the upper-level 
spin, then q = 1 and the second term comes into play. The local field at the 
ith spin at time to + v is then given by 

hi(to + z) = ~ + 2(~ = (1 - 2) ~ '  (31) 

In writing Eq. (31), we have neglected correction terms arising from the 
interference of noncondensed patterns. This is correct if the number of 
stored patterns Pl is of order unity. It is then obvious that if the parameter 
2 is chosen to have a value greater than unity, then the system undergoes 
a transition to the complement state {a i=  - ~ } ,  which has the correct 
sign of the magnetization, at time to + ~. Thus, for Pl ~ O(1) and 2 > 1, the 
network functions in the following way. If the initial configuration is close 
to a memory state with the correct sign of the magnetization, then the 
system converges to this memory state and stays there. If, on the other 
hand, the initial state is close to a memory with an incorrect sign of the 
magnetization, then the network still converges to this memory state, stays 
in it for a time ~ z, and then undergoes a spontaneous transition to the 
complement state which has the correct sign of the magnetization. This 
model, thus, is able to correct errors in categorization. The behavior of this 
model for pl  ~ O(nl) is difficult to analyze exactly because the methods of 
equilibrium statistical mechanics are no longer applicable. The dynamics of 
an asymmetrically diluted version of this model may be analyzed exactly 
in the limit of extreme dilution by using methods developed by 
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Derridaetal .  (18) and Gutfreund and Mezard. (19) This calculation (2~ 
suggests that  if pl  is of order nl ,  then transitions between a memory  and 
its complement  occur if 2 > 2c, with 2c less than unity. Numerical  simula- 
tions (2~ of the fully connected model  appear  to confirm this prediction. 

We now discuss how the variable t/(t) may  be computed  in a neural 
network. Consider the network shown in Fig. 4, where the lines with 
arrows represent one-way synaptic connections with strengths as indicated. 
The spins in a lower-level cluster are represented by a~, a2,..., an~ and ~b 
represents the upper-level spin associated with this cluster, t/~, t/z , t/3 , and 
;74 are binary neurons (Ising spins) with thresholds given by the numbers  
in brackets. The dynamics of one of these neurons is governed by the rule 

qi(t + 1) = Sign(hi(t) - hio) (32) 

( 1)02 
(i) 

rl, (- I)  

-I 
I 

(0) 

w �9 �9 �9 b 

nl 
Fig. 4. Neural circuit for computing the quantity ~/ defined in text [see the paragraph 
following Eq. (29)]. The lines with arrows represent one-way synaptic connections with 
strengths as indicated, ql, r/z, 1/3, and ~4 are binary neurons with thresholds given by the 
numbers in parentheses. 
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where hi(t) is the local field arising from interactions with other neurons 
and hio is the threshold. It is readily seen that  r/1 = s ign(Z/a i ) ,  and if r/1 
and ~b have the same sign, then one of  t/2, t/3 is in the + 1 state and the 
other one is in the - 1  state. The spin //4 is then in the + 1 state. In  the 
other case, t/1 = -~b, bo th  ~2 and t/3 are in the - 1 state and t/4 = - 1 .  Thus, 
if we set t /=  (1--t /4)/2 , then q will have the desired property. With this 
definition of r/, the D u term of Eq. (29) has the form (2/2)(1 - t / 4  ) Z j  Doaj, 
which consists of two terms. The first term corresponds to a direct interac- 
t ion between crr and a j, whereas the second one represents an indirect inter- 
action between ~r~ and aj proceeding via a third neuron,  q4. As ment ioned 
in the preceding section, there is some biological evidence (13) for the 
existence of such indirect interactions between neurons in the cerebellum. 

We have carried out  simulations to test the performance of the model  
defined in Eq. (29). Figure 5 shows the distribution of  final overlaps 
obtained from 500 runs with r andom inputs to a network with nl = 101, 
Pl = 5, 2 = 1.3, ~ = 9 at tempted updates per spin, ~b = 1, and ~ ~" > 0 for 
all/~. As before, we have taken the overlap which has the largest magnitude 
among  the overlaps of  the final configurat ion with all the memory  states 
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{~} .  The large peak near 100% overlap indicates that this scheme 
functions quite well. The fact that there is no weight at negative values 
of the overlap tells us that this model effectively prevents the system from 
condensing into states with incorrect signs of the magnetization. In a few 
runs, the system gets stuck in spurious states which, perhaps, cannot be 
avoided in any model of this class if the initial states are chosen at random. 

6. S U M M A R Y  A N D  DISCUSSION 

In this paper, we have used analytic and numerical methods to study 
the behavior of a class of hierarchical neural network models for the 
storage and retrieval of strongly correlated memories. This class of models 
was introduced by Dotsenko. In Section 2, we showed that the models con- 
sidered by Dotsenko have a serious shortcoming if the patterns stored in 
each cluster at the lowest level of the hierarchy are, as originally proposed, 
random binary sequences. The problem is that these models are not able to 
detect or correct errors in categorization which may be present in the input 
pattern. In Sections 3-5 we described three different models which are con- 
structed with a view toward overcoming this limitation of the original 
models. Analytic and numerical calculations discussed in detail in these sec- 
tions show that all three models are able to recognize, and also to correct 
in a majority of cases, any error in categorization present in the input. The 
first model, which uses fields conjugate to the patterns, is the simplest of 
the three. It, however, has the disadvantage of being able to store only a 
small number of patterns in each lower-level cluster. The second and third 
models do not have this limitation, but they involve more complicated 
multispin interactions. The problems associated with spurious stable states 
are present, in varying degrees, in all three models. This problem is the 
least severe in the third model, which, in our numerical simulations, 
appears to always converge to a memory state with the correct sign of the 
magnetization if the initial state is close to a memory or its complement. 
The third model also has the nice feature of exhibiting two distinct time 
scale, one describing a convergence of the system to the nearest memory 
state and the other one, determined by the parameter ~, describing the 
process of correcting any error in categorization that may be present in a 
given input. 

We finally note that the models studied here belong to a more general 
class of neural network models which may be constructed to address the 
following problem. Consider a network consisting of m clusters each con- 
taining n spins. Each cluster stores p patterns which may or may not be 
correlated among themselves. By combining the patterns stored in all the 
clusters, we get (2p) m distinct but correlated mn-bit patterns if a pattern 
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and  its complemen t  are cons idered  to be distinct.  The p rob lem is to deter-  
mine  a scheme for connect ing  the clusters (either direct ly  or  via a second 
set of spins)  in such a way tha t  only  a selected subset  of  the (2p) m pa t te rns  
co r re spond  to stable m e m o r y  states and  the remain ing  ones are unstable.  
A ne twork  which has this p rope r ty  would  be useful in many  contexts.  F o r  
example ,  the memor ies  s tored  in each cluster may  represent  the letters in 
the a lphabet ,  and  the overal l  pa t t e rns  composed  of app rop r i a t e  memor ies  
selected from the clusters may  represent  meaningful  words.  In  ano ther  
example ,  each cluster m a y  store the digits 0 -9  and  the overal l  pa t t e rn  may  
represent  m-digi t  numbers  to be memorized .  I t  is hoped  that  the models  
s tudied in this pape r  would  be useful in this more  general  context.  

A C K N O W L E D G M E N T S  

This work  was suppo r t ed  in par t  by the Ind ian  N a t i o n a l  Science 
Academy  th rough  a research fel lowship awarded  to C.D. 

R E F E R E N C E S  

1. D. J. Amit, Modelling Brain Function (Cambridge University Press, 1988). 
2. J. J. Hopfield, Proc. Natl. Acad. Sci. USA 79:2554 (1982); 81:3088 (1984). 
3. D. Amit, H. Gutfreund, and H. Sompolinsky, Phys. Rev. A 32:1007 (1985). 
4. D. Amit, H. Gutfreund, and H. Sompolinsky, Phys. Rev. Lett. 55:1530 (1985); Ann. Phys. 

173:30 (1987). 
5. L. B. Ioffe and M. V. Feigelman, JETP Lett. 44:189 (1986); N. Parga and M. A. Virasoro, 

J. Phys. (Paris) 47:1857 (1986); G. Toulouse, S. Dehaene, and T. Changeux, Proc. Natl. 
Acad. Sci. USA 83:1965 (1986); C. Cortes, A. Krogh, and J. A. Hertz, J. Phys. A 20:4449 
(1987); H. Gutfreund, Phys. Rev. A 37:570 (1987). 

6. M. M. Merzenich and J. H. Kaas, Prog. Psychobiol. Physiol. Psychol. 9:1 (1980). 
7. M. Mezard, G. Parisi, and M. A. Virasoro, Spin Glass Theory and Beyond (World 

Scientific, Singapore, 1987). 
8. V. S. Dotsenko, J. Phys. C 18:L1017 (1987); JETP Lett. 44:193 (1986); Physica 140A:410 

(1986). 
9. B. Gidas, IEEE Trans. Pattern Analysis Machine Intelligence 2:164 (1989). 

10. D. H. Hubel and T. N. Wiesel, Proc. R. Soc. Lond. B 198:1 (1977). 
11. V. Dotsenko and B. Tirozzi, Carr. Rep. Math. Phys. (1989). 
12. C. R. Willcox, J. Phys. A 22:4707 (1989). 
13. S. W. Kuttler and J. G. Nicholls, From the Neuron to the Brain (Sinauer, Sunderland, 

Massachusetts, 1976). 
14. D. E. Rumelhert and J. L. MacClelland, Parallel Distributed Processing, Vol. 1 (MIT 

Press, Cambridge, Massachusetts, 1986). 
15. E. Gardner, J. Phys. A 20:3453 (1987). 
16. D. Kleinfeld, Proc. Natl. Acad. Sci. USA 83:9469 (1986). 
17. H. Sompolinsky and I. Kanter, Phys. Rev. Lett. 57:2861 (1986). 
18. B. Derrida, E. Gardner, and A. Zippelius, Europhys. Lett. 4:167 (1987). 
19. H. Gutfreund and M. Mezard, Phys. Rev. Lett. 61:235 (1988). 
20. V. Deshpande and C. Dasgupta, to be published. 


